

Институт динамики геосфер имени академика М.А. Садовского Российской академии наук

Геомеханика разломов

<u>д.ф.-м.н. Г.Г. Кочарян</u>

gevorgkidg@mail.ru

Школа «Геофизика природных катастроф»

30 июня 2024г.

МФТИ

- Режимы скольжения по разлому
- Структура разломной зоны
- Зарождение и трансформация процесса скольжения.

Разломы земной коры

Участки сейсмодислокации Гоби-Алтайского землетрясения 1957 г.

Тектонические разломы, трещины разного масштаба, зоны дробления и т.д. являются важнейшим элементом геомеханических моделей.

Музей разлома (Кобе, Япония)

Под термином «разлом» (в англоязычной литературе *fault*) обычно понимается достаточно крупное нарушение сплошности земной коры вдоль которого происходило относительное смещение пород.

Участок разрыва Denaily, M7.9 2002 (USGS)

https://blogs.agu.org/tremblinge 2012/11/05/ten-years-ago-dena shook/

Denaily Fault каждый раз при крупном EQ на протяжении тысячелетий смещал речные долины.

На этом изображении разлом проходит сверху слева вниз вправо, а большие отклонения каждого каньона представляют собой совокупный результат десятков землетрясений, произошедших к 2002 году.

Процессы, контролируемые разломами

MENDENHALL RESEARCH FELLOWSHIP PROGRAM

22-33. Physics-based modeling of earthquake hazard in northern California

Глобальная задача - построение
 расчетной модели, основанной на
 физических принципах и успешно
 выполняющей прогностические
 функции.

Модели, основанные на физике, могут заполнить информационные пробелы, которые в настоящее время ограничивают практический анализ сейсмической опасности. Эта тематика направлена на улучшение понимания связей между физическими процессами, ожидаемыми сотрясениями в любом месте и оценкой сейсмической опасности посредством использования компьютерного моделирования и/или разработки геологических 3D-моделей. Структуру деформационных процессов, происходящих в окрестности сейсмогенного разлома, с известной долей условности, можно разделить на две подобласти, едва пересекающиеся во времени и пространстве зона подготовки и зона локализации деформаций.

- Зона подготовки землетрясения

 процессы детерминированные
 эволюцией соответствующего
 участка коры (~ nL).
- особенности НДС;
- накопление энергии деформации
- трансформация характеристик среды, деформационных и гидрогеологических процессов, параметров физических полей в ближней и дальней окрестности будущего разрыва.
- Практически все предвестники относятся к этой зоне.

- Процессы в зоне локализации деформаций; условия зарождения, распространения и остановки разрыва.
- Физические и химические процессы, происходящие на разных масштабных уровнях – от перемещений геоблоков, до образования нанокристаллов в зеркалах скольжения.
- Их влияние на характер скольжения, прочностные, фрикционные, реологические свойства материала.
- Структура разломной зоны, ее флюидодинамика и т.д.

Режимы скольжения

Крип

Отступление 1

Произведение среднего сдвигового

Сейсмический момент и сейсмическая энергия

$$M_{0} = \mu \cdot uLD$$

$$M_0 = \mu \cdot u \cdot L^2 = \mu \cdot \frac{u}{L} \cdot L^3 = \sigma_s \cdot S \cdot L = F_s \cdot L$$
 усилия, действующего на разломе, на его длину.

$$u \Big| \sim \frac{\mu \cdot u_0 LD \cdot R_c \cdot F(\omega, L/v_r)}{(1 + \omega^2 \tau^2)^{1/2}}$$

Величина статического сейсмического момента не зависит от скорости распространения разрыва в очаге !!!

$$E_{s} = 4\pi r^{2} C_{f}^{-2} \left[r_{0} q(r_{0}) / r q(r) \right]^{2} \rho_{0} \beta_{0} \int \sum v^{2} dt$$

При выполнении условий подобия: Величина приведенной энергии е=E_s/M₀ не зависит от размера землетрясения.

Каковы причины столь большого разброса величины приведенной энергии?

Кочарян, 2016

«Жесткие» и «вялые» землетрясения

Ю.В. Ризниченко

Н.В. Шебалин

Т.Г. Раутиан

Структура разломных зон

Главные стадии разрывообразования соответствуют трем характерным отрезкам на кривой "нагрузка (σ) – деформация (ε), границами которых являются уровни напряжений на пределе текучести (**точка** *A*), конечной прочности (**точка** *B*) и остаточной прочности (**точка** *C*).

Тектонофизическая модель формирования разломной зоны)

[Семинский, 2003]

Непланарность поверхности скольжения

E 0.02

-0.02

Wang, Bilek, 2014

x [m]

0.8

Sagy, Brodsky et al 2007, 08, 09

B

BISTACCHI et al., 2011

Непланарность поверхности скольжения

Зависимость средней приведенной ширины «зоны разрушения» от амплитуды сдвига. Величина перемещения нормирована на длину трещины. Ширина зоны увеличивается до 0,5-1,5% от длины блока. после чего интенсивность разрушения ослабевает и рост ширины трещины замедляется

Локализация скольжения

«Зоны скольжения разломов, испытавших большое смещение, часто встречаются внутри ультракатакластических, возможно, глиносодержащих зон толщиной порядка десятков и сотен миллиметров, но зона основного сейсмического сдвига может локализоваться до толщины менее 1–5 мм в пределах этого ультракатаклазового ядра». (J.Rice, 2011)

1. Обследованию эксгумированных участков.

2. Глубинное бурение через разломы.

Зоны магистрального сместителя некоторых разломных зон [Shipton et al., 2006].

а) Небольшая трещина остывания, <u>смещение около</u> <u>20см</u>,

б) Участок разлома со смещением около 60см.

в) Зона магистрального сместителя со смещением

около 8м

г) Зона магистрального сместителя разлома с полным **смещением около 100м**.

Alpine Fault

Эксгумированный контакт между Тихоокеанской и Австралийской плитами.

C. Boulton et al., 2017

Alpine Fault, DFDP-1A, Gaunt Creek

In DFDP-1A drill core, multiple generations of gouges containing montmorillonite are seen (shaded in orange). Older generations are deformed in the rocks above the plateboundary contact. The most recent generation occurs as a thin layer along the boundary.

Drilling site

Nan-TroSEIZE

«Взаимодействие" магистральных сместителей через зоны распределенных катакластических деформаций (штрихованные области).

Сублинейные конгломераты отдельных магистральных сместителей и участков гетерогенной трещиноватости и формируют единую магистральную зону разлома.

Схематичное изображение структуры разломной зоны

Зона влияния разлома (*Damage zone*) – участок массива разлома с повышенной, по сравнению с фоновой, плотностью трещин. Степень трещиноватости повышается по направлению к Центральной части разломной зоны (*Fault core*) в которой выделяют одну или несколько подзон интенсивной деформации сантиметрыметры толщиной.

Внутри последних полосы интенсивного измельчения зерен определяют **зону магистрального сместителя** (*Principal slip zone*), толщина которой составляет всего лишь первые см (может локализоваться до толщины менее 1–5 мм).

В сейсмически активных разломных зонах:

- высокая степень локализации
- большая часть деформаций имеет косейсмический характер
- косейсмические разрывы часто происходят вдоль одной и той же поверхности

• перемещения по вторичным, вновь образованным нарушениям сплошности, невелики.

Одной прочности мало!

Распространение трещины Гриффитса

τ

σ

Условия старта/остановки разрыва

Скольжение по разлому

Разрыв начинается если выполняется

условие

$$\frac{dU}{dc} = \frac{dU_e}{dc} + \frac{dU_s}{dc} = 0$$

И условие старта, и условие остановки определяются соотношением между скоростью динамического высвобождения упругой энергии деформации (U_e) и скоростью расходования энергии на распространение трещины (U_s).

Разрыв останавливается либо если возрастает удельная энергия разрушения, либо снижается интенсивность выделения упругой ²³ энергии.

Разрыв стартует если выполняется условие

$$\frac{dU}{dc} = \frac{dU_e}{dc} + \frac{dU_s}{dc} = 0$$

Разрыв останавливается либо если возрастает удельная энергия разрушения, либо снижается интенсивность выделения упругой энергии.

- Энергия разрушения (идущая на образование новых поверхностей) является <u>локальным свойством</u>.
 границы раздела.
- Интенсивность высвобождения упругой энергии G=dU_e/dC зависит от пространственной протяженности разрыва и упругих свойств вмещающей среды. <u>Является нелокальным</u> параметром.

2C

σ

Энергия

24

«Сильные» и «слабые» участки разломов - пятна

[Кочарян, Кишкина., 2021] ²

Магнитуда, М"

Отступление 2 Трение на разломе.

Фрикционные параметры определяют не только величину трения, но и скорость его снижения после начала скольжения!!

Модель Rate & State трение

Фрикционные свойства – «упрочнение-разупрочнение» определяются материальным составом поверхности скольжения, а также Р-Т условиями.

a-b>0 - скоростное упрочнение (VS) – стабильное скольжение a-b<0 - скоростное разупрочнение (VW) – нестабильное скольжение

Тип скольжения разлома эволюционирует от устойчивого к неустойчивому скольжению с увеличением коэффициента трения. Кочарян и др., 2023

Отступление 2 Трение на разломе.

Значения коэффициентов трения и фрикционных параметров, определенных для некоторых геоматериалов

Материал	μ ₀ , сухой	μ _w ,	Фрикционный
		водонас.	параметр, (а-b)
Актинолит		0.5-0.8	<0
(85%)+ хлорит			
(15%)			
Антигорит		0.57-0.60	-0.0044-(-0.0015)
Амфиболит	0.67		-0.001-(-0.016)
Гранит Westerley	0.63-0.72	0.6-0.7	-0.005 - 0.023
Габро		0.58-0.68	-0.02 - 0.007
Гиббсит	0.74	0.5	
Известняк		0.62-0.71	-0.004 -0.005
Лизардит	0.8	0.18	
Монтморлонит	0.41	0.03	
Сапонит		0.1-0.17	0.0007-0.0067
Смектит	0.25-0.31	0.03-0.09	-0.0015 -0.011
		остаточный	
Эпидотит	0.63		-0.001-(-0.007)

Кочарян и др., 2023

$$a-b > 0-VS - упрочнение$$

 $a-b < 0-VW - разупрочнение$

b c 100 m

а

Современные представления: «пятна asperitis» - области с разными фрикционными свойствами.

Volpe et al., 2022

Несколько пятен

За пределами участка разупрочнения скорость смещения быстро снижается, вновь увеличиваясь на соседних пятнах. Чем выше суммарная доля участков с разупрочнением, тем выше доля энергии деформации, идущей на излучение упругой волны в высокочастотной части спектра.

Вне пятен – кулоновское трение.

Проницаемость разломных зон

«Точечные» данные.

- На обнажениях отбираются образцы для проведения испытаний, а также выполняется оценка эффективной проницаемости отдельных трещин.
- 2. Керны из протолита, зоны влияния.

«Объемная проницаемость

- 1. Малые глубины опытно-фильтрационные работы.
- 2. Поинтервальные измерения А. Структура разломной зоны
 - в скважинах.

Sutherland et al., 2012

Гидравлические свойства разломных зон

Гистограммы распределения логарифма объемной проницаемости разломных зон для нескольких интервалов глубин (по данным [Scibek, 2020])

Какую характеристику разлома следует Отступление 3: выбрать для использования в геомеханических моделях?

32

Отступление 3:

Что брать в качестве ширины разлома?

Достоинства «жесткости»:

1. Позволяет «уйти» от неопределенного параметра «толщина трещины (разлома)».

2. Более других параметров чувствительна к изменению характеристик как нарушения сплошности, так и НДС. Отражает структуру разлома, проницаемость, свойства заполнителя.

3. Может быть измерена дистанционно сейсмическими методами.

4. Сдвиговая жесткость разлома является макроскопическим параметром, контролирующим режим скольжения по разлому и эффективность подвижки по разлому как сейсмического источника.

5. Резкое снижение сдвиговой жесткости разлома свидетельствует о переходе разлома в метастабильное состояние.

квазистатические

Различия между статической и динамической жесткостями может достигать двух порядков.

УЗ эксперименты

Kaproth, B. M., and C. Marone (2014),

Отступление 4 Баланс энергии при образовании разрыва.

- по определению жесткость разлома

Сейсмическое излучение содержит только информацию, касающуюся изменения напряжений в ходе землетрясения и не содержит информацию о величине полных напряжений

Наклон этой линии –

жесткость массива К ~ G/L

 ΔU_{e} – полное изменение внутренней энергии ΔU_{s} – энергия, затраченная на трещинообразование ΔU_{f} – энергия диссипированная в тепло при скольжении E_{s} – излученная энергия

Условие неустойчивости:

 $|k_s| > |K|$

Скорость снижения сопротивлению сдвигу больше, чем скорость сброса напряжений.

Отношение K/ks определяет Es

Режимы скольжения

Геомеханические условия инициирования динамического скольжения

Достижение в локальной области уровня напряжений порядка текущей величины прочности контакта.

$$(II) \frac{\partial \tau}{\partial v} < 0; \ \frac{\partial \tau}{\partial D} < 0$$

τ

Разупрочнение - Р-Т условия, структурные и физико-механические свойства геоматериала.

$$(III) |k_s| = \left| \frac{\partial \tau}{\partial D} \right| \ge K = \eta \frac{G}{\hat{L}}$$

Соотношение между жесткостями массива и разлома.

Взаимодействие SSE и EQ

D Coupling (%) 0.5° 18 0° -0.5° -1° -1.5° -81.5° -81° -80.5° -80° -79.5°

SSE (синие линии), сейсмические рои (голубые точки) и повторы (синие квадраты) перед землетрясением MW 7.8 2016г. (Rolandone et al., 2018) SSE могут происходить при VW трении, если из-за повышенного давления флюида размер зоны нуклеации больше размера пятна. Это предотвращает эволюцию скольжения в сторону динамической нестабильности. 39

(i) Прямая корреляция между SSE и некоторыми крупными землетрясениями определенно установлена/

(ii) Большинство SSE не влечет за собой сильных землетрясений.

(iii) Судя по всему, SSE является возможной, но не обязательной частью процесса зарождения землетрясений.

Едва ли стоит рассчитывать на использование информации об этих явлениях в интересах краткосрочного прогноза, однако их изучение дает ценную информацию о физике очага.

Первоочередные задачи мониторинга с целью получения первичных сведений необходимых для построения расчетной модели

Выявлять:

- 1. Специфические фрикционные свойства зоны скольжения или ее подобластей (V_S, V_W).
- 2. Области с локализацией различных типов скольжения.
- 3. Предвестник начала динамического скольжения (хорошо бы මම !!!!).

Вопрос: Насколько присутствие медленных событий гарантирует асейсмичность области??

Крайне низкие значения Е/М и, соответственно, V_f позволяют предполагать, что взрыв инициировал рой медленных микроземлетрясений.

).5

Нормированная спектрограмма сейсмического сигнала, зарегистрированного на станции LCO перед Чилийским землетрясением Mw8.3, 16.09.2015г. Белой линией представлен спектральный центроид, рассчитанный в частотной области 0.01 – 0.5 Гц.

ISSN 1069-3513, Izvesitya, Physics of the Solid Earth, 2020, Vol. 56, No. 2, pp. 151–161. © Pletades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Fizika Zemli, 2020, No. 2, pp. 10–20.

Microseismic Noise before and after Strong Earthquakes: Case Study of Chilean Subduction Zone

A. N. Besedina^{a, *}, S. B. Kishkina^a, G. G. Kocharyan^a, and I. A. Ryakhovskiy^a

^aSadovsky Institute of Geospheres Dynamics, Russian Academy of Sciences, Moscow, 119334 Russia *e-mail: besedina.a@gmail.com Received August 5, 2019; revised October 14, 2019; accepted October 14, 2019

Выводы

- Для сейсмически активных разломных зон характерны:
- высокая степень локализации
- большая часть деформаций имеет косейсмический характер
- косейсмические разрывы часто происходят вдоль одной и той же поверхности
- Различные режимы реализации энергии деформации определяются фрикционными свойствами поверхности раздела, зависящими от Р-Т условий, материального состава, гидрологического режима и т.д.
- Отношение сдвиговой жесткости разломной зоны к жесткости массива является универсальным параметром, определяющим режим скольжения независимо от P-T условий.
- Области разломных зон с разными режимами скольжения взаимодействуют, в значительной степени определяя ход процессов инициирования, эволюции и остановки динамического разрыва.
- Масштаб зарождающегося разрыва детерминирован фрикционными свойствами окружающих областей.

Перспективные направления исследований

- Исследование структуры разломных зон на глубине (локализация)
- характерные размеры зоны скольжения
- Параметры зоны влияния
- Процессы массопереноса
- Взаимодействие коротких сегментов разрыва
- 2. Макроскопические условия старта и остановки разрыва.
- Роль различных триггеров.
- Стохастическая или детерминистская модель?
- Взаимодействие различных мод скольжения.
- 3. Исследование геометрии поверхностей скольжения (в широком смысле)
- На крупных asperities *оп* ниже?
- Шероховатость на больших масштабах не контролирует трение?
- Увеличение амплитуды шероховатости и уменьшение ее минимальной длины волны, приводит к переходу от сейсмического скольжения к асейсмическому.
- Крупномасштабная шероховатость (асперитиз) контролирует «сложность разрыва» и соотношение энергии к моменту.

- 4. Физическая природа вариаций трения
- систематическое исследование всех обнаруженных зависимостей и комплексирование их в связную, теоретически обоснованную систему.

5. Структура и свойства зоны влияния

- Структура и свойства зоны динамического влияния модулируют параметры динамического разрыва
- Связь структурных и физ.-мех свойств разломной зоны и «сверхзвуковых разрывов».
- «Постоянство» сброса напряжений.
- 6. Разработка новых методов мониторинга.
- 7. Новые подходы
- •_Анализ полевых и лабораторных данных с помощью методов машинного обучения, искусственного интеллекта
- Построение принципиально новых, наблюдательных сетей в окрестности разломных зон.

 Численное моделирование отдельных стадий процесса с целью определения связи между различными физическими механизмами и оценки их относительной важности.

ФИЗИКА ЗЕМЛИ, 2021, № 4, с. 3—41
ОБЗОР
УДК 550.34,551.24,622.83

ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ ПРОЦЕССОВ СКОЛЬЖЕНИЯ В ЗОНАХ КОНТИНЕНТАЛЬНЫХ РАЗЛОМОВ ПОД ДЕЙСТВИЕМ ПРИРОДНЫХ И ТЕХНОГЕННЫХ ФАКТОРОВ. ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ ВОПРОСА¹

ФИЗИКА ЗЕМЛИ, 2023, № 3, с. 3—32

УДК 550.34,551.24,622.83

ТРЕНИЕ КАК ФАКТОР, ОПРЕДЕЛЯЮЩИЙ ИЗЛУЧАТЕЛЬНУЮ ЭФФЕКТИВНОСТЬ ПОДВИЖЕК ПО РАЗЛОМАМ И ВОЗМОЖНОСТЬ ИХ ИНИЦИИРОВАНИЯ. СОСТОЯНИЕ ВОПРОСА

© 2023 г. <u>Г. Г. Ко</u>чарян^{1,} *, А. Н. Беседина¹, Г. А. Гридин¹, К. Г. Морозова¹, А. А. Остапчук¹

ФИЗИКА ЗЕМЛИ, 2024, №4, с. 3–32

УДК 550.34+556.3

АКТУАЛЬНЫЕ ВОПРОСЫ ГИДРОГЕОЛОГИИ СЕЙСМОГЕННЫХ РАЗЛОМНЫХ ЗОН

© 2024 г. Г. Г. Кочарян^{1,} *, И. В. Шатунов¹

Chachoosa Bhumahuc